4.6. SPAN OF TRIGONOMETRIC SUMS IN WEIGHTED L ${ }^{2}$ SPACES*

Let $\Delta=\Delta(\gamma)$ be an odd nondecreasing bounded function of γ on the line \mathbb{R}, let $Z(\Delta)=$ $L^{2}(\mathbb{R}, d \Delta)$ and let $Z^{T}(\Delta)$ denote the closure in $Z(\Delta)$ of finite trigonometric sums $\Sigma c_{j} e^{i \gamma t} j$ with $\left|t_{j}\right| \leqslant T$. It is readily checked that $Z^{T_{1}}(\Delta) \subset Z^{T_{2}}(\Delta)$ for $T_{1} \leqslant T_{2}$ and that $\bigcup_{T \geqslant 0} Z^{\top}(\Delta)$ is dense
in $Z(\Delta)$. Let

$$
T_{0}(\Delta)=\inf \left\{T>0: Z^{T}(\Delta)=Z(\Delta)\right\}
$$

with the understanding that $T_{0}(\Delta)=\infty$ if the equality $Z T(\Delta)=Z(\Delta)$ is never attained. The following three examples indicate the possibilities:
(1) if $\Delta(\gamma)=\int_{0}^{\gamma}\left(\xi^{2}+1\right)^{-1} d \xi$, then $T_{0}=\infty$;
(2) if $\Delta(\gamma)=\int_{0}^{\gamma-|\xi|} e^{\text {(}} d \xi$, then $T_{0}=0$;
(3) if Δ is a step function with jumps of height $1 /\left(n^{2}+1\right)$ at every integer n, then $\mathrm{T}_{0}=\pi$.

Problem. Find formulas for T_{0}, or at least bounds on T , in terms of Δ.
Discussion. Let Δ^{\prime} denote the Radon-Nikodym derivative of Δ with respect to Lebesgue measure. It then follows from a well-known theorem of Krein [1] that $\mathrm{T}_{0}=\infty$ as in example (1) if

$$
\int_{-\infty}^{\infty} \frac{\log \Delta^{\prime}(\gamma)}{\gamma^{2}+1} d \gamma>-\infty
$$

A partial converse due to Levinson-McKean implies that if Δ is absolutely continuous and if $\Delta^{\prime}(\gamma)$ is a decreasing function of $|\gamma|$ and $\int_{-\infty}^{+\infty} \frac{\log \Delta^{\prime}(\gamma)}{\gamma^{2}+1} d \gamma=-\infty \quad$ [as in example (2)], then $T_{0}=0$. A proof of the latter and a discussion of example (3) may be found in Sec. 4.8 of [2]. However, apart from some analogues for the case in which Δ is a step function with jumps at the integers, these two theorems seem to be the only general results available for computing T_{0} directly from Δ. (There is an explicit formula for T_{0} in terms of the solution to an inverse spectral problem, but this is of little practical value because the computations involved are typically not manageable.)

The problem of finding T_{0} can also be formulated in the language of Fourier transforms since $Z^{T}(\Delta)$ is a proper subspace of $Z(\Delta)$ if and only if there exists a nonzero function $f \in$ $Z(\Delta)$ such that

$$
\tilde{f}(t)=\int_{-\infty}^{+\infty} e^{i x t} f(x) d \Delta(x)=0
$$

for $|t| \leqslant T$. Thus

$$
T_{0}=\operatorname{in} \&\{T>0: \tilde{f}(t)=0 \text { for }|t| \leqslant T \Rightarrow f=0 \quad \text { in } Z(\Delta)\}
$$

Special cases of the problem in this formulation have been studied by Levinson [3] and Mandelbrojt [4] and a host of later authors. For an up-to-date survey of related results in the special case that Δ is a step function see [5]. The basic problem can also be formulated in

[^0]$L^{-p}(\mathbb{R}, d \Delta)$ for $1 \leqslant p \leqslant \infty$. A number of results for the case $p=\infty$ have been obtained by Koosis [6-8].

LITERATURE CITED

1. M. G. Krein, "On an extrapolation problem of A. N. Kolmogorov," Dok1. Akad. Nauk SSSR, 46, 306-309 (1945).
2. H. Dym and H. P. McKean, Gaussian Processes, Function Theory and the Inverse Spectral Problem, Academic Press, New York (1976).
3. N. Levinson, Gap and Density Theorems, Colloquium Publ., Amer. Math. Soc., New York (1940).
4. S. Mandelbrojt, Séries de Fourier et Classes Quasi-analytiques, Gauthier-Villars, Paris (1935).
5. R. M. Redheffer, "Completeness of sets of complex exponentials," Adv. Math., 24, 1-62 (1977).
6. P. Koosis, "Sur l^{\prime} 'approximation pondérée par des polynomes et par des sommes d'exponentielles imaginaires," Ann. Sci. Ec. Norm. Sup., 81, 387-408 (1964).
7. P. Koosis, "Weighted polynomial approximation on arithmetic progressions of intervals or points," Acta Math., 116, 223-277 (1966).
8. P. Koosis, "Solution du probleme de Bernstein sur les entiers," C. R. Acad. Sci. Paris, Ser. A, 262, 1100-1102 (1966).

[^0]: *HARRY DYM. Department of Mathematics, The Weizmann Institute of Science, Rehovot, Israel.

